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3.0 Preliminaries on Topoi

In this section, we present some basic notions and facts about topoi.

For an object E, and two monomorphisms m : A — E and n : B — FE in a
category C, if there exists a morphism f : A — B such that m = nf (necessarily,
f is a monomorphism), then we shall write m < n (or A < B). Moreover, we shall
write m =2 n (or A = B) if m < n and n < m hold. Note that m = n iff there exists
an isomorphism ¢ : A — B such that m = ni. Note also that the binary relation =
is an equivalence relation on the class of all monomorphisms with codomain E. We
shall denote the class of all equivalence classes of monomorphisms with codomain F
by Subg(E). As usual, according to the context, we shall say that m : A — FE is a
subobject of E (or A is a subobject of E for short), meaning a particular representative

of the equivalence class or an equivalence class of monomorphisms with codomain FE.

Definition 3.0.1 (topoi [2], Definition IV.1 (pp. 161-163)). A topos is a cat-
egory £ such that

(i) € has finite limits;
(ii) &€ has power objects;
(iii) &€ has a subobject classifier. O

Fact 3.0.1 ( [2], Theorem IV.2.1 and Corollary 1V.5.4). Every topos has fi-
nite colimits and exponentials. That is, every topos is an elementary topos (see [2, p.

48]). Conversely, every elementary topos is a topos. O
Let € be a topos and true : 1 — € a subobject classifier for £.

Definition 3.0.2. Let E be an object in £. We shall denote the classifying morphism
for a subobject m : A — E of E by char(m). In particular, we shall call the classifying
morphism for the diagonal morphism A gE for E the Kronecker delta of E, and denote
it by g : F x E — € as in the following diagram:

B
EF—

1
AEI p.b. Itrue (301)
Q,

ExFEF——-
23]

where !¥ is the unique morphism from the object F to the terminal object 1. We shall

call the exponential transpose (see [0, p. 98] [2, p. 20]) of the Kronecker delta dg by

*1 In a category with binary products, the diagonal morphism Ag : E — E x E for an object E
is a morphism such that m;Agp = idg (i = 1,2) for the projections m; : E X E — E (i = 1,2).
Note that, by the universal mapping property of products, the diagonal morphism is unique.
Moreover, Ag is a monomorphism.
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E the singleton morphism for E, and denote it by {*}g as in the following diagram:

Ex FE

. g5
ldEX{*}E\L \ (3.0.2)

EXQEWQ,

where evg is the evaluation morphism.
We shall call the classifying morphism for (true, true) : 1 — Q x Q the internal meet

operation, and denote it by A as in the following diagram:

11—

(true,true)I p.b. Itrue (303)
QxQ — Q.

For two morphisms s, ¢ € Homg (F, ), we shall denote the composite Ao (s,t) by sAt
for short. O

Fact 3.0.2. Let e,e¢’ : A — E be two morphisms in £. Then we have the following

equivalence:
dple,e’) =trueo ! & e=¢. (3.0.4)
O

Proof. Suppose that dg(e,e’) = true o 14, Then, by the definition of the Kronecker
delta, there exists a unique morphism [ : A — F such that Agl = (e,e’) as in the

following diagram:

This implies that e =1 = €'
For the converse, suppose that e = ¢/. Then we have (e, e’) = Ag oe. This implies

that the following diagram is commutative:

A—">F 1
O A\(E O Itruc
(e.e) ¥
ExE——Q.
5]
Hence, we obtain dg(e, ¢’y = true o 1Y, The proof is complete. |

Fact 3.0.3. For any object E in &, the singleton morphism {x} g for E is a monomor-

phism. O
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Proof. Let e,¢’ : A — E be two morphism such that {x}ge = {x}ge’. By taking
the exponential transpose of each side of {*}ge = {x}ge’, we have dg(idg X €) =

dr(idg x €’), and the following diagram is commutative:

ExA

idg xe, idEXe'\L \

\SE(idEXG):(;E(idEXS,)
ExXE o
idEX{*}E\L \O(SE

On the other hand, note that both squares in the following diagram are pullbacks:

B

A = E 1
(e,idA)I p.-b. AIE p-b. Itrue
ExA——FExFE—-=Q.

idEXE 6E

By the pasting lemma for pullback squares, the outer rectangle is also a pullback
diagram. Hence, we have char({e,id4)) = dg(idg x €). Considering the same diagram

for €/, we also have char({¢’,id4)) = dg(idg x €’). From the above, we obtain
char((e,idA>) = 5E(ldE X 6) = 5E(idE X 6/) = char((e’,idA)).

This implies that there exists a morphism h : A — A such that {e,id4) = (¢/,ida)h.
Therefore, we have e = ¢’h and id4 = h. Thus, we obtain e = ¢/. The proof is

complete. |

Fact 3.0.4. For each object E in &, the class Subg(E) of all subobjects of E is a
meet semi-lattice. Moreover, for any two subobjects m : A — E andn : B — E of
E, the classifying morphism for the meet m An of m and n in Subg(FE) is given by

the composite N\ o (char(m),char(n)), i.e.,

char(m A n) = A o {char(m), char(n)) = char(m) A char(n). (3.0.5)
O

Proof. Let m: A— E and n: B — E be two subobjects of E. First, we claim that
the meet m An: AA B»— E of m and n is given by the pullback of n along m as in

the following diagram:

n=(m)

AN B\
ml(n)I mA
A ™

m

Sy

n

BH

Put mAn :=m(m~'(n)) : ANB — E. Clearly, we have m An < m,n. To prove that
m A n is the greatest lower bound of m and n, suppose that there exists a subobject
l: L — FE of F such that [ < m,n. Then there exist two morphisms u : L — A and

v : L — B such that mu = [ and nv = [, respectively. By the universal mapping
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property of the pullback A A B, this implies that there exists a unique morphism
k:L — AA B such that m~!(n)k = v and n=!(m)k = v as in the following diagram:

N
o AANB>n"'(m)—= B

’ \\TZE(H) p.b. In

Hence, we have [ < m A n. Therefore, m A n is the greatest lower bound of m and n.

Next, we shall prove that the classifying morphism for the meet m A n is given
by the composite A o {char(m),char(n)). To prove this, by the pasting lemma for
pullback squares, it is sufficient to prove that the following both left hand-side and

right hand-side of the outer rectangle are pullback squares:

JAAB 1
ANB : 1 :
mAn p.b. (true,true,)  p.b. Itrue
Qx0 Q.

(char(m),char(n)) A

We shall only prove that the left hand-side of the outer rectangle of the above diagram
is a pullback square. Suppose that there exists a morphism w : X — FE such that
(char(m), char(n))u = (true, true) o !*. We must prove that there exists a unique
morphism ! : X — A A B such that (m An)l = u. By taking each component of each

side of (char(m), char(n))u = (true, true) o !, we have
char(m)u = trueo ™ and char(n)u = true o I¥.

Note that the following both two diagrams are pullback squares:
|

\B
B !

nI p.b. Itrue
E Q

A——1

Itrue
Q

)

1A
m p.b.
r—
char(m)

char(n)

Hence, there exists a unique morphisms [,, : X — A and a unique morphism [,, :
X — B such that ml,, = v and nl,, = u, respectively. By the pullback condition for
A A B, there exists a unique morphism [ : X — A A B such that m~'(n)l = [,, and

n~Y(m)l =1, as in the following diagram:
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Therefore, we have
(m An)l=m(m™(n))l = miy, = u.

To prove the uniqueness, suppose that there exists another morphism I’ : X — A A
B such that (m A n)l’ = u. Since m An = m(m=t(n)) = n(n=t(m)), we have
m(m~1(n))l' = v and n(n=1(m))l’ = u. Recall that two morphisms I,, and ,, are
unique ones such that ml,, = uw and nl,, = u, respectively. This implies that we have
m~Y(n)l' = l,, and n=1(m)’l =1,. Recall also that the morphism [ : X — AA B is a
unique one such that m~'(n)l = I, and n=*(m)l = I,,. Thus, we obtain I’ = [. The

proof is complete. n

Fact 3.0.5. In a topos, every monomorphism is an equalizer, and every bimorphism

B2 s an isomorphism. O

Proof. Let m : A — FE be a monomorphism. Then there exists the classifying

morphism char(m) for m making the following diagram a pullback:

At

1
m Itrue
Q.

EF—
char(m)

This implies that m is the equalizer of char(m) and trueo!®. If m is an epimorphism,
then we have char(m) = true o !, This implies that char(m) = char(idg), i.e., m is

an isomorphism. The proof is complete. |

Definition 3.0.3 (images). For a morphism f : A — B in a category C, a
monomorphism m : M »— B is called an image of f if f factor through m, say
f = me for some morphism e : A — M, and if there exists another monomorphism
n : N — B through which f factor, say f = nh for some morphism h: A — N, then
m factors through n, i.e., there exists a morphism [ : M — N such that nl = m. In
other words, an image m of f is a representation of the least subobject of B through

which f factor as in the following diagram:

A —e> M >m-—> B

RN

We shall also call the object M an image of f. %

Note that if we have two factorizations f = me and f = me’ with a monomorphism
m and some two morphisms e and €', then e = €', since m is a monomorphism.
The following fact about image factorizations are basic tools to construct the asso-

ciated sheaf functor later.

*2 We shall call a morphism which is a monomorphism and an epimorphism a bimorphism.
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Fact 3.0.6 (image factorizations [2, Proposition IV.6.1, 2]). In a topos, for
any morphism f : A — B, there exist an image m : M — B of f and an epimorphism

e: A— M such that f = me. Moreover, images are determined up to isomorphism.]

We shall say that the factorization f = me as in Fact B8 the image factorization
of f. More generally, we shall say that a factorization f = me is an epi-mono
factorization of f if m and e are monomorphism and epimorphism, respectively.

The following two facts (Fact B4 and Fact BTIR) related to epimorphisms in a

topos are fundamental facts to investigate image factorizations.

Fact 3.0.7 ( [2, Proposition IV.7.3]). In a topos, the pullback of an epimorphism

is an epimorphism. O

Definition 3.0.4 (kernel pairs). Let t : E — W be a morphism in a category C.
Then a pair (f,g) of two morphisms f,g : B — E is called the kernel pair of t if f
and ¢ are universal morphisms such that tf = tg, i.e., f and g make the following
diagram a pullback:

B——

E
f p.b. it

Equivalently, the product (f,g) with ¢tf = tg is the kernel pair of ¢ if the following

diagram is a pullback square:

B—=

(f»9>I p.b. IAW

ExXE——WxW.
txt

Therefore, the kernel pair is represented by the pullback (¢ xt)~!(Ay) of the diagonal
morphism Ay along t x ¢. In particular, if ¢ is a monomorphism, then the following

diagram is a pullback square:

E ! 1174

AEI p.b. IAW

Ex E>—W xW.
txt

That is, the kernel pair of ¢ is represented by the diagonal morphism Apg. %

Fact 3.0.8 ( [2, Theorem IV.7.8]). In a topos, every epimorphism is the coequal-

izer of its kernel pair. O

Fact 3.0.9. In a topos, every epi-mono factorization of a morphism is the image

factorization. O

Proof. Let f : A — B be a morphism in a topos £. Suppose that f = me : A —

M — B is an epi-mono factorization of f. We shall prove that m : M — B is the
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image of f. To this end, suppose that there exists another monomorphism n : N — B
with a morphism h : A — N such that f = nh. By Fact BT, the epimorphism e is

the coequalizer of its kernel pair, say, k, k' : K — A as in the following diagram:

f

K BA—e»Mxm»B

RN

nhk = mek = mek’ = nhk’.

Then we have

Since n is a monomorphism, we obtain hk = hk’, i.e., h coequalizes k and k’. Since e
is the coequalizer of k and k', there exists a unique morphism [ : M — N such that
le = h. Then we have me = nh = nle. Since e is an epimorphism, we obtain m = nl.

This implies that m is the image of f. The proof is complete. |

Fact 3.0.10 (images are stable under pullbacks). Let f : A —» B and g: C —
B be two morphisms in a topos € and f =me: A — M — B the image factorization

of f. Then the pullback g=*(m) of the image m along g is the image of the pullback
of g~'(f) along g. O

Proof. Put n := g~'(m) : N ~— C for short. We shall prove that n is the image
of g71(f). Note that since g(¢g~'(f)) = me(f~1(g)), the pullback condition in the
right-hand side of the rectangle below implies that there exists a unique morphism
h: D — N such that m~1(g)h = ef~1(g) and nh = g~ 1(f):

g7
O
D> 3p >N—">(C
fl(g)i 0 mvl(g) p.b. ig
A . M — B.

Since the above outer rectangle is a pullback diagram and the right-hand side of the
rectangle is a pullback square, the left-hand side of the rectangle is also a pullback
square, by the pasting lemma for pullback squares. By Fact BT, h is an epimorphism.

Thus, we have the following commutative diagram:

9 ')

~ /I
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Therefore, g~*(f) = nh is an epi-mono factorization of g~!(f). By Fact B, n :
N — C is the image of g~*(f). The proof is complete. [ ]

The following fact will be used to prove that “the category of sheaves in a topos”

has a subobject classifier.

Fact 3.0.11. Let m : A — E be a monomorphism in a topos £. Then m~'3,, =
idgube (a) holds, where 3, (n) : 3,,(N) — E is the image of the composite nm for
each subobject n: N — A of A. O

Proof. Let n : N — A be a subobject of A. Consider the image factorization

mn = 3, (n)e : N - 3,,,(N) — E of mn as in the following diagram:

N ° A = E
)
x A)
I (V).

Since both m and n are monomorphisms, mn is also a monomorphism. Since
Im(n)e = mn, e is also a monomorphism, Therefore, e is a bimorphism. Hence, e
is an isomorphism, by Fact BIXE. Thus, mn : N — E and 3,,(n) are equivalent in
Subg(E). Consequently, the pullback m~=1(3,,(n)) of 3,,(n) along m is a pullback of

mn along m as in the following diagram:
m ™ (T (N)) = 3 (N)
ml(am(n))I p.b. Iﬂm(n)§mn

Hence, we have m~1(3,,(n)) 2 m~!(mn). On the other hand, note that the following
diagram is a pullback square:

1o [

This implies that m~!(mn) = n holds. Therefore, we have m~1(3,,(n)) 2 n. Thus,

we obtain m~13,, = idgube(4)- The proof is complete. |

The following fact will be used to prove that the associated sheaf functor preserves

equalizers.

Fact 3.0.12 ( [2, Proposition IV.7.7]). In a topos, if f : X =Y and g : W — Z
are epimorphisms, then sois f x g: X xW —Y x Z. O

3.1 Lawvere-Tierney Topologies

In this section, we shall present the definition of Lawvere-Tierney topologies on a

topos.
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Definition 3.1.1 (Lawvere-Tierney Topologies). Let £ be a topos and true :
1 — Q a subobject classifier for £. A Lawvere-Tierney topology on £ is a morphism

7 Q — Q satisfying the following three conditions:

(i) jotrue = true,
1 true

Q
true l]

3

(i) joj =3,

(i) jo A= Ao (jxj)

Q X Q ? Q,
where A is the internal meet operation (see Definition BTI2). O

Definition 3.1.2 (closures). Let € be a topos, true : 1 — 2 a subobject classifier
for £ and j : @ — Q a morphism in £. For each object E in £ and each subobject
m : A — E in Subg(FE), we define the closure m : A — E of m : A — E (for j) as
the subobject of E' making the outer square of the following diagram a pullback:

1A

A ' 1
p.b.
(A
m A——1 true (311)
m p.b. Itrue
idg char(m) J

That is, the classifying morphism for the closure m : A — E is given by
char(m) = j o char(m). (3.1.2)

We shall call the mapping assigning the closure m : A — E to each subobject
m: A— E of E the closure operator (for j). O

Fact 3.1.1 (closure operators are natural). In a topos, for each morphism f :
E — F and each subobject n : B — F of F, the following holds:

f7U(B) = fU(B), (3.1.3)

in other words,
char(f~1(7@)) = char(f~1(n)). (3.1.4)
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Proof. Let f : E — F be a morphism and n : B — F a subobject of F. Then we

have

char(f~'(m)) = char(m) o f = j o char(n) o f = j o char(f~'(n)) = char(f=1(n)).
The proof is complete. u

Definition 3.1.3 (closed subobjects and dense subobjects). Let E be an ob-
ject in a topos £. Then a subobject m : A — E of F is said to be closed (in F
for j) if m = m (or A = A), in other words, char(m) = char(m). Furthermore,
m : A— F is said to be dense (in E for j) if m = idg (or A = E), in other words,
char(m) = char(idg). We shall also call a dense subobject m : A — E of E a dense

monomorphism. O

Fact 3.1.2. A morphism j : Q — Q in a topos € is a Lawvere-Tierney topology on €
iff the closure operator for j satisfies the following three conditions for any object E

i &, and any two subobjects m: A— E andn:B— E of E:

In other words,

(ia) m <m;
(iia) char(m) = char(m);
(iiia) char(m An) = char(m AT).
Moreover, if the closure operator satisfies the condition (iii), the closure operator is

order-preserving, i.e., for any two subojbects m : A »— E andn : B — E of E, if
A< B, then A< B. O

Proof. Let true : 1 — Q be a subobjects classifier for €.

(j otrue = true < ((i), (ia))) Suppose that j satisfies the condition j o true = true.

Let m : A »— E be a subobject of E. Since j o true = true, we have
char () o m = j o char(m) o m = j o true o 1t = true o 1,

Hence, there exists a unique morphism d,, : A — A such that m = md,, as in

the following diagram:

W
U
3
c

(3.1.5)
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Therefore, we obtain m < m.

Conversely, consider the monomorphism !* : 1 — 1. Note that ! = id;.
Hence, we have char(!') = true o !*. On the other hand, since ! = id; is the
maximum subobject in Subg(1), by (i) or (ia), we have Char(!T) = char(!").

Therefore, we have

jotrue = char(!T) = char(!*) = true :

L

(joj=j< ((ii), (iia))) Let m: A E be a subobject of E. Then we have

11

1

true

true

Hb—‘

_—

idy true
char(m) = j o char(m) = j o j o char(m). (3.1.6)

Suppose that j o j = j. Then we have char(m) = j o char(m) = char(m).
Conversely, suppose that j satisfies (ii) or (iia). Note that the following

1 1
trueI Itrue
Q.

Hence, we have char(true) = idg. Taking the subobject m = true in (BTH),

diagram is a pullback square:

*>

H

we have
char(true) = j o char(frue) = j o j o char(true) = j o j.
On the other hand, by (ii) or (iia), we have
char(true) = char(frue) = j o char(true) = j.
Thus, we obtain joj = j.
((joA= Ao (5 xj) < ((iil), (iiia))) Let m: A— FE and n: B — E be two subob-
jects of E. Then we have
char(m An) = j o char(m An) = j o A o (char(m), char(n)). (3.1.7)
On the other hand, we have

char(m A ) = A o (char(Tn), char(m)) = A o (j o char(m), j o char(n))
= Ao (j x j)o{(char(m), char(n)). (3.1.8)
If jo A= Ao(jxj), then we have char(m An) = char(m A7), by (BI=0) and
Conversely, suppose that char(m An) = char(m A ®). Taking m = n = true
in (BI22) and (BI3), we obtain jo A = Ao (j X j).
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Finally, we shall prove that the closure operator is order-preserving if it satisfies
the condition (iii). To this end, let m : A — E and n : B — E be two subobjects of
Ein & If A< B, then A= AA B. By (iii), we obtain A~ AANB~ AAB < B, ie,
A < B. The proof is complete. |

We note that if j satisfies the conditions (i) and (ii), the monomorphism d,, : A — A
in (BI3) is dense. Accordingly, we shall call d,, the canonical dense monomorphism

for m.

Remark 3.1.1. Since the inequality A < A is equivalent to the condition AN A = A,

the above condition (i) can be written by the following equation:

Ao (idg X j) o Ag = idg. (3.1.9)
O

Fact 3.1.3. Let £ be a topos and j a Lawvere-Tierney topology on E. Letd: A — E
be a dense monomorphism and f : FF — E a morphism in £. Then the pullback

f~Y(d) of d along f is dense. O

Proof. Recall that the condition that d : A — E is dense is defined as char(d) =
j o char(d) = char(idg). Note that char(f~!(d)) = char(d) o f. Note also that the

following diagram is a pullback square:

f

_

idp| p.b.

<"

E
\LidE
E.

This implies that char(f~!(idg)) = char(idr). From the above, we obtain

char(FT(@) = j o char(f~(d))
= j ochar(d) o f
= char(idg) o f
= char(f~!(idg))
= char(idp).

—_—

f

The proof is complete. u

Fact 3.1.4. Let £ be a topos and j a Lawvere-Tierney topology on €. Let E and F
be two objects in E. Let m : A — FE andn : B — F be subobjects of E and F,
respectively. Then the closure of the cartesian product m xn : Ax B — E X F is
given by the cartesian products of the closuresm : A — E andm : B — F, i.e.,
m X n>=mXn, in other words, char(m X n) = char(m x m). In particular, if m and
n are closed or dense, then the cartesian products m X n is also closed or dense, as

the case may be. O

Proof. First, we shall prove the following equation:

char(m x n) = A o (char(m) x char(n)). (3.1.10)
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To this end, by the pasting lemma for pullback squares, it is sufficient to prove that the
following both left-hand side and right-hand side of the outer rectangle are pullback

squares:
|1AXB 11
AXx B : 1 : 1
anI p.b. (true,true) p.b. Itrue
EXxXF QxQ —_— Q.

char(m) X char(n)

We shall only prove that the left hand-side of the outer rectangle of the above diagram
is a pullback square. To prove this, suppose that there exists a morphism u : X —
E x F such that (char(m) x char(n))u = (true, true)o!X. We must prove that there
exists a unique morphism ! : X — A x B such that (m x n)l = u. By taking each

component of each side of (char(m) x char(n))u = (true, true) o !, we have
char(m)miu = trueo I and char(n)mu = true o I,

where 7 : E X F — F and mo : E x F — F are the projections. Note that the

following both two diagrams are pullback squares:

14 1B
A————>1 B———>1
m p.b. Itrue nI p.b. Itrue
E— 50, F— Q.
char(m) char(n)

Hence, there exists a unique morphisms /; : X — A and a unique morphism Iy : X —

B such that ml; = miu and nly = mou, respectively. Therefore, we have
(m x n){ly,la) = (mly,nly) = (mu, mou) = u.

To prove the uniqueness, suppose that there exists another morphism [ : X — A x B

such that (m x n)l = u. Then we have
mmil = mu and mmhl = mou,

where m; : AXx B — A and my : A X B — B are the projections. Recall that two
morphisms [; and /5 are unique ones such that ml; = mu and nls = mou, respectively.
Hence, we have 71l = I3 and 74l = ls. Therefore, we obtain I = (I1,[3). This completes
the proof of (B11M). Thus, we obtain

char(m X n) = j o char(m X n)
= j o Ao (char(m) x char(n)) (by (BTM))
= Ao (j x 7)o (char(m) x char(n)) (by joA=Ao(jxj))
= Ao (char(m) x char(m))
= char(m xm) (by (B110))

The proof is complete. u
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Theorem 3.1.1. Let (C,J) be a site, true : 1 — Q a subobject classifier for the
presheaf category SetsC”. Then a morphism 7 : Q@ — Q defined for a sieve S on

CeCby
jo(S) ={g : dom(g) — C'| g*(S5) € J(dom(g))} (3.1.11)

is a Lawvere-Tierney topology on SetsC” B O
Proof. Recall that the truth value object € of Sets€” is given by
QC ={S|Sisasieve on C} for an object C' in C,

Qf :QC > f— f*(S) € QD for a morphism f: D — C in C.

First, we must verify the well-definedness of j, i.e., jo(S) is a sieve on C for each
C € C and each S € QC. To thisend, let C € C, S € QC, g: D — C € j(S) and
h:D"— D € C. Then ¢g*(S) € J(D), by g € jo(S). By the stability axiom of J, we
have (gh)*(S) = h*(g*(S)) € J(D’). Hence, gh € jo(S). Therefore, jo(S) is a sieve
on C, i.e., jo(S) € QC.

Next, we shall prove the naturality of j, i.e., for each f: D — C € C, the following
diagram is commutative:

ac -2~ ac
Qfl O \Lﬂf

QD —— QD.
JD

To this end, let f: D — C € C and S € QC. Then we have

(Q2f)(Ge(9) = [*(e(9) ={g: D" = D fg € jc(9)}
={g: D" = DI(f9)"(S) € J(D')}
={g: D" = DIg"(f*(9)) € J(D")}
= Jp(f7(5)) = jp(Qf(S))-

Now, we shall examine two basic facts about j. Let S and T be two sieves on C. We
claim that j is order-preserving, i.e., if S C T, then Jo(S) C jo(T), and S C ja(S).
To prove that j is order-preserving, let g : D — C € jo(S5), i.e., g*(S) € J(D) and
S CT. Since g*(S) C ¢g*(T), we have g*(T) € J(D) (see Fact 3.1.1 in [@]). Therefore,
g € jo(T). To prove that S C jo(S), let f: D — C € S. Then f*(S) =tp € J(D),
where tp is the maximal sieve on D. Therefore, f € jo(5).

Finally, we shall prove that j is a Lawvere-Tierney topology on SetsC”

(j otrue = true) Let C € C. Recall that the truth arrow assign the maximal sieve
to a set *, i.e., truec(x) = tco. Hence, it is sufficient to prove that jo(te) = to.
Since for all g : D — C € t¢ , g*(tc) = tp € J(D), we obtain jo(tc) =
{9:D—Clg*(tc) € J(D)} = tc.

*3 Recall that for a sieve S on C € C and a morphism g : D — C in C, g*(S) =
{h:D" — D|gh €S}
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(joj=7) Let C € CandS € QC. By the above fact, we have S C jo(.S). Since j
is order-preserving, we obtain jo(S) C jo(jo(S)). For the converse inclusion,
let g: D — C € jc(jc(S)). Then g*(jo(S)) € J(D), by the definition of j.
On the other hand, we have

9" (jc(5)) ={h: D" — D|gh € jo(9)}
={h:D' — D|h*(g*(S)) € J(D)}.

This implies that for all b : D" — D € ¢*(jc(S)) € J(D), we have h*(g*(5)) €
J(D’). By the transitivity axiom of J, we have ¢*(jc(S)) € J(D), ie., g €
Jjo(S). Therefore, we have jo(jo(S)) C jo(S). From the above, we obtain
Jjoj=17-

(JoA=Ao(jxj)) LetCeCandS,T € QC. By Fact BT, it is sufficient to prove
that jo(SNT) = jc(S)Njo(T). Since SNT C S, T and j is order-preserving,
we have jo(SNT) C jo(5),jc(T). Hence, jo(SNT) C jo(S)Njc(T). For
the converse, recall that for all ¢ : D — C € C, if ¢*(5),¢"(T) € J(D),
then ¢*(SNT) € J(D) (see Fact 3.1.4 in [@]). From the above, we obtain
jon=~Ae(jx ).

The proof is complete. |

In accordance with Theorem BT, we shall call the Lawvere-Tierney topology j
on Sets®” determined by a Grothendieck topology J via the equation (BTI) the
Lawvere-Tierney topology induced by J.

3.2 Sheaves

Let &€ be a topos and j a Lawvere-Tierney topology on €.

Definition 3.2.1 (sheaves for a Lawvere-Tierney topology). An object G in &
is said to be separated for j, if for every dense subobject m : A — E, the following

mapping is injective:
mg¢, : Homg (E,G) 3 f — fom € Homg (A, G). (3.2.1)

Moreover, an object F' in & is called a sheaf for j (or j-sheaf for short), if for every

dense subobject m : A — FE, the following mapping is bijective:
mp : Homg(E,F) > f+— fom € Homg (A, F). (3.2.2)

We shall write Sep;E and Sh;& for the full subcategory of £ given by all the sep-
arated objects for j and by all the sheaves for j, respectively. We shall denote the
inclusion functor from Sh;& to £ by i : Sh;& — €. O

By definition, sheaves for j are separated for j. Therefore, Sh;€& is a full subcategory
of Sep;E. We shall denote the inclusion functor from Sh;& to Sep,;& by isp;e : Sh;& —
Sep;€. Similarly, we shall denote the inclusion functor from Sep;€ to & by iSep, €
Sep; € = £.
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The aim of the rest in this section is to prove the following theorem:

Theorem 3.2.1. Let & be a topos and j a Lawvere-Tierney topology on £. Then Sh;E
is a topos. Moreover, the inclusion functor i : Shy — & is left exact and preserves

exponentials. O

Lemma 3.2.1. Both Sep;& and Sh;E are closed under limits. Let G be separated
for i, F a sheaf for j and B an object in . Then the exponentials G® and FB
are separated and a sheaf for j, respectively. In particular, the inclusion functor

i:Shy — & is left exact and preserves exponentials. O

Proof. First, we shall prove that both Sep;& and Sh;& are closed under limits. To
this end, it is sufficient to prove that equalizers in Sep,;€ or Sh;& are separated objects
or sheaves for j, as the case may be, and products in Sep;& or Sh;& are separated or
sheaves for j, as the case may be. Throughout this proof, let m : A — E be a dense
subobject of E. We remark that the terminal object 1 is a sheaf for j. Indeed, by the

universal mapping property of the terminal object,
m} : Homg(E,1) 3% — 1% o m € Homg (A, 1)

is bijective, where ¥ . E — 1 is a unique morphism from E to the terminal object.
Hence, 1 € Sh;& and 1 € Sep;€&.

Next, we shall prove that equalizers in Sep;& or Sh;& are separated or a sheaf for
7, as the case may be. To this end, let o, 8 : G — H be two morphisms in £ and
e : C — G the equalizer of o and 3. We shall prove that C' is separated for j. To this
end, let f,g € Homg(E,C) be such that m}(f) = m&(g), i.e., fm = gm. Then we

have
me(ef) =efm = egm = mg(eg) € Homg (A, G).

Since G is separated, mg, is injective. Hence, we have ef = eg. Since e is a monomor-
phism, we obtain f = g. Therefore, m¢ is injective, i.e., C' is separated. We shall
prove that C is a sheaf for j if G is a sheaf for j and H is separated. To this end, let
n € Homg (A, C). Since mf, : Homg (E,G) — Homg (A, G) is surjective, there exists
a morphism f € Homg(E, G) such that m§,(f) = en. On the other hand, since e is

the equalizer of o and 3, we have
my(af) = afm = aen = Ben = Bfm = my (Bf).

Since mj; is injective, we have af = Sf, i.e., f equalizes o and 8. Since e is the

equalizer of o and f3, there exists a morphism [ : E — C such that el = f:

C—>G—=H

Ao p
l:
e

E

Recall that fm = en. Hence, elm = fm = en. Since e is a monomorphism, we obtain

mg(l) =lm =n € Homg (A, C). This implies that mg, is surjective. As we have seen
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in the above, mf is injective. From the above, mf is bijective. Thus, C is a sheaf for
j.

Next, we shall prove that the small product [],.; G; of {G;}icr is separated if G;
are separated for all ¢ € I. To this end, let f,g € Homg(E,[],o; G;) be such that
mHieI o, (f) = mniel ¢, (9); 1e, fm = gm. Let m;(i € I) be projections from the
product [],.; G to G;. Then we have

el

mg, (1 f) = mifm = migm = m*(m;9) € Home(E,G;) (i €1).
Since G; € Sep;€ (i € I), mg, (i € I) are injective. Hence, we have m;f = mig (i € I)

E

mif=mig
fi9: x
'

[Lic; Gi 77— G

By the universal mapping property of the product [[,;.; G, we obtain f = g. Hence,

my |, s injective. Therefore, [[..; G; is separated.
2S] v

13

We shall prove that the [[;.; G; is a sheaf for j if G; are sheaves for j for all i € I.
To this end, let n € Homg(A,[[;c;Gi). Since G; € Sh;& (i € I), m*G; (i € I)
are surjective. Hence, there exist morphisms h; € Homg(E,G;) (i € I) such that
mg, (hi) = hym = mn (i € I). By the universal mapping property of the product

[I;c; G, there exists a unique morphism I € Homg (&, [[,; G:) such that m;l = h,(i €

i€l
I) as in the following diagram:

[Lic; Gi m— G

Hence, we have
Wilm:him:mn (ZGI)

By the universal mapping property of the product [];,.; G; again, we obtain
m, ¢, (1) = im = n. Therefore, miy,_, @, i surjective.

Finally, we shall prove that the exponential G is separated or sheaf for j if G is sep-
arated or sheaf for j, as the case may be. By the natural bijection Homg (FE, xGB) =
Homg(E x B, G), we have the following commutative diagram:

*

Homg (E, GB o Homg (A, GB

Homg(E x B,G) Homg (A x B, G).

(mXidB)G

Therefore, it is sufficient to prove that m x idg : A x B — E x B is dense. Note that
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the following pullback diagram is a pullback square:

AXB&A

mxidBI p.-b. Im

By Fact B3, the pullback m xid g of m along 7 is dense, since m is dense. Therefore,
G € Sep;& or G € Sh;& implies that (m x idp)¢ is injective or bijective, as the case
may be. The proof is complete. |

We shall investigate a subobject classifier for Sh;&. Consider the equalizer e; :

Q; — € of j and idg as in the following diagram:

Q- “-0—=xaq. (3.2.3)
ido

As we shall see later, ; is a subobject classifier for Sh;E. Since j o j = j, the
morphism j also equalizes j and idg. Hence, by the universal mapping property of
the equalizer e;, there exists a unique morphism 7 : 2 — ; such that e;r = j as in
the following diagram:

e; J
Q —Q—=0O.

Ao idgo
r .
J

Q

Hence, we have (e;r)e; = je; = e;. Since the equalizer e; is mono, we have re; = idg;,
i.e., r is a retraction of e; : Q; — Q. In particular, r is an epimorphism. Therefore,
we obtain an epi-mono factorization j = e;r of j. We recall that in a topos, every
epi-mono factorization is the image factorization. Therefore, e; : €0; — ) is the image
of j, i.e., e; is the least subobject of {2 through which j factor.

Since j o true = true, i.e., true equalizes j and idg, and e; is the equalizer of j and
idg;, there exists a monomorphism true; : 1 — €; such that e; o true; = true as in

the following diagram:
1

true
true; \
y ©

J
Q —Q—=0O
€ idg

We shall denote the class of all closed subobjects of E by ClSubg(E).
Lemma 3.2.2. The monomorphism true; : 1 — Q; classifies ClSubg(E) for each
object E in E. Moreover, for each closed subobject m : A — E of E, the classifying

morphism for m is the composite r o char(m) for each object E € &, which is natural
mEef. O

Proof. Let m : A — E be a closed subobject of E, i.e., j o char(m) = char(m).
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Consider the following diagram:

P
!
\

m true;

true (324)

EOH)—‘

FE— Qj —_—
rochar(m) €j

First, we shall prove that the right-hand side of the diagram (B=24) is a pullback
square. To this end, suppose that there exists a morphism u : X — €2; such that
ejou = trueo 1X. Since true = ej otrue; holds, we have ej ou = ¢; o true; o IX. Since
e; is a monomorphism, we obtain u = true; o 1X. This implies that the above square
is a pullback square.

Next, consider the outer rectangle of (8224). Since m : A — E is closed and, since
j has the image factorization j = e;r, the outer rectangle of (8=24) is a pullback
diagram. By the pasting lemma for pullback squares, the left-hand side of (B=Z34) is
also a pullback square.

Conversely, suppose that a morphism x,, : £ — €2; makes the following left-hand

side of the diagram below a pullback square:

ALlLl

mI p.b. trlEej p.b. Itrue

E—Q; — Q.
Xm e;

As we have seen in the above, the right-hand side of the above diagram is a pullback
square. By the pasting lemma for pullback squares, the outer rectangle is also a
pullback diagram. Hence, we have e; o x,, = char(m). Since r is a retraction of e;,
ie., re; = idg,, we obtain y,, = r o char(m). Thus, r o char(m) is the classifying
morphism for the closed subobject m : A — E.

Finally, we shall give the bijection £g from Homg(E, ;) to ClSubg(E) explicitly.

To this end, we set
¢p - Homg (F, Q) 2 x — X *(true;) € ClSubg (E).
For the inverse 5]51, we set
¢, ClSubg(E) > m + 7 o char(m) € Homg (E, Q).
In fact, we have
€7 (Ep(x)) = o char(x ! (true;)) = roejox = x,

for each x € Homg(E, ), and since the outer rectangle of (BZ4) is a pullback

diagram, we have
¢p(€g"(m)) = €g(r o char(m)) = (r o char(m)) ™! (true;) = m

for each m € ClSubg(E). The proof is complete. |
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Lemma 3.2.3. Let m : A — E be a dense subobject of E. Then the inverse image

map
m™!: ClSubg(E) 3 v — m~*(v) € ClSubg(A) (3.2.5)

is an tsomorphism. O

Proof. Define a proposed inverse m; : C1Subg(A) — ClSubg (E) to m~! by setting

mi(u) := Im(u) (u:U— A€ ClSubg(A)),

where 3,,(u) is the image of the composite mu and the closure is taken in Subg(E).
Since the closure operator is natural, v : U ~ A is closed and, since we have m~13,, =

idgube (4), we obtain

1%

w7 (mi(w) = m™ G () = m G (W) 2T .

Conversely, let v : V »— E be a closed subobject of E. Note that m~!(v) £ v Am

as in the following pullback square:

v (m)

mY(V)—=V

ml(u)I p.b. \[v

We claim that v A m = 3,,(v A m). Indeed, note that 3,,(v A m) is the image of the

monomorphism m(m~!(v)) as in the following diagram:

m~1(v)

VAA A i E
\ © %%v))
I (V AA.

This implies that e in the image factorization is an epimorphism and a monomorphism,
i.e., a bimorphism. Hence, e is an isomorphism. Therefore, we have vAm = 3., (vAm).

Since m : A — E is dense and 7 : V — E is closed, we obtain

1%
1%
1%

mi(m™ () =F(m=1(w) 23, (vAm) ZVAMZTAMETAidg
Therefore, m; is the inverse of m~!. The proof is complete. |

Lemma 3.2.4. Let E be a sheaf for j and m : A — E a subobject of E. Then A is
closed iff A is a sheaf for j. O

Proof. Suppose that A is a sheaf for j. Consider the canonical dense monomorphism

dy @ A — A for m. By assumption, the following mapping

(dy)% : Homg (A, A) — Homg (A4, A)
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is bijective. Hence, for id4 : A — A € Homg(A4, A), there exists a morphism r €

Homg (A, A) such that rd,, = id4 as in the following diagram:

i
PN

da A

dm m

| <<

— L.

On the other hand, the canonical dense monomorphism satisfies that md,, = m.
Therefore, we have mrd,, = m = md,, € Homg(A4, E), i.e., (dp)5(mr) = (dy)5(Mm).
Since E is a sheaf for j, (d,)}% is bijective. Thus, we obtain mr = 7. Since 7 is
a monomorphism, this implies that r is also a monomorphism. On the other hand,
since rd,, = id4, r is an isomorphism. Indeed, rd,, = id4 implies that rd,,r = r.
Since r is a monomorphism, we have d,,r = id. Therefore, r satisfies that rd = id4
and d,,r = id, ie., r: A — A is an isomorphism. Thus, A =2 A4, i.e., A is closed.
Conversely, suppose that A is a closed subobject of E. To prove that A is a sheaf
for j, let d : D »— B be a dense monomorphism and f € Homg (D, A). We shall prove
that there exists a unique morphism h € Homg (B, A) such that d% (h) = f. Since E

is a sheaf for j,
dy; : Homg (B, E) — Homg (D, E)

is bijection. Hence, for mf € Homg (D, E), there exists a unique morphism g €

Homg (B, F) such that gd = mf. Now, consider the following diagram:

From the above diagram, we have D < g~!(A). Since d : D — B is dense and the

closure operator is natural, in Subg (B) we obtain the following ordering:
B=D<g 1(A) =g (4) =g (4).

Hence, there exists a morphism ¢t : B — g~ !(m) such that g=!(m)t = idg. Put
h := m~1(g)t for short. Note that m(m~1(g)) = g(g~*(m)) as in the above diagram.

Therefore, we have
mhd = m(m~*(g9))td = g(g~*(m))td = gd = mf.

Since m is a monomorphism, we obtain hd = f. We shall prove that h is the unique
morphism such that hd = f. To this end, suppose that there exists another morphism
k : B — A such that kd = f. Then we have

mkd = mf = gd = gidgd = g(g~"(m))td = m(m~*(g))td € Homg(D, E),
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that is, dj(mk) = di(mm~1(g)t). Since E is a sheaf for j, d% is bijective. Hence,
we have mk = mm~1(g)t. Since m is a monomorphism, we obtain k = m~=1(g)t = h.
Therefore, h is the unique morphism such that hd = f, i.e., d%(h) = f. Thus, d¥ is

an isomorphism. The proof is complete. |

Now, we shall prove Theorem B2l. First, by Lemma B2, Sh;€ has (finite) limits
and exponentials, and these operations are preserved by the inclusion functor s.
Next, we shall prove that €); is a sheaf for j. Let m : A — E be a dense monomor-

phism. By Lemma B2, ; classifies closed subobjects, i.e., there exists a bijection
&g Homg (E,Q;) — ClSubg (E)

for each object E in &, which is natural in £ € £. Note that for any n : N —
E, we have mg, (n) = char(n) om = char(m~1(n)). Hence, we have the following

commutative diagram:

Homg (E, ;) —>HomgAQ
:

ClSubg (E) ——— ClISubg (A

By Lemma B2, the inverse image functor m~! : ClSubg(E) — ClSubg(A) is bijec-
tive. Therefore, the mapping mg, : Home (E, ;) — Homg(A, ;) is also bijective,
i.e., ; is a sheaf for j.

Finally, we shall prove that true; : 1 »— €); is a subobject classifier for Sh;E&.
We have already seen in Lemma BZ2 that true; : 1 ~— Q; classifies ClSubg(E)
for each object E in £&. Moreover, by Lemma B4, for all ' € Sh;&, we have
ClSubg (F') = Subgy,¢(F'). This implies that true; : 1 = Q; is a subobject classifier
for Sh;&. The proof of Theorem B2 is complete.

3.3 The Associated Sheaf Functor

The aim of this section is to prove the following theorem:

Theorem 3.3.1. Let £ be a topos, j a Lawvere-Tierney topology on £. Then the
inclusion functor i : Sh;E — & has a left exact left adjoint a: £ — Sh;E. O

Lemma 3.3.1. Let m : B — C' be a monomorphism in €. If C is separated for j,
then so is B. O

Proof. Let d : D — FE be a dense monomorphism and f,g € Homg(E, B) such
that d5(f) = di(g), i.e.,, fg = gd. Then we have mfd = mgd € Homg(D,C),
ie, d&(mf) = di(mg). Since C is separated for j, df. is injective. Hence, we have
mf = mg. Since m is monomorphism, we obtain f = g. This implies that dj is

injective. Therefore, B is separated for j. The proof is complete. |

Lemma 3.3.2. Let C be an object in £. Then the following conditions are equivalent:
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(i) C is separated for j;
(ii) the diagonal morphism Ac : C — C x C for C is a closed subobject of C x C;
(iii) j€ o {*}c = {*}c holds:

o ge

O .C
{k lj

QC;

(iv) for any morphism f: A — C in &, the product (ida, f) : A— AxC is a closed
subobject of A x C. O

Proof. ((i) = (ii)) Suppose that C is separated for j. We shall prove that C < C
and C < C hold. Consider the canonical dense monomorphism dag 1 C — C
for Ag, i.e., da, is the dense monomorphism such that Acda, = Ac. Hence,
C < C holds in Subg(C x C). To prove that C < C holds, let 7 and 7 be
projections from C x C to C. By the definition of the diagonal morphism, we
have m;Acda,. = mAc = ide € Homg(C,C) (i = 1,2). Therefore, we have
(dac)e(mAc) = (dag )& (m2Ac). Since C is separated, the mapping

(da)e : Homg (C, C) — Homg (C, O)

is injective. Hence, we have mA¢c = mAg, ie., Ac equalizes m; and mo. On
the other hand, A¢ is an equalizer of m; and my E1. Therefore, there exists a
morphism [ : C — C such that Agl = Ag, i.e., C < C in Subg(C x C). Thus,
we have C' 2 C in Subg(C x O).

((ii) < (iii)) Recall that the diagonal morphism Agx : C — C x C is a closed sub-
object of C'x C'iff jodc = d¢, where d¢ = char(A¢) is the Kronecker delta of

C as in the following diagram:

Recall also that the singleton morphism {*}c : C — Q¢ is the exponential
transpose of d¢ (see Definition BIIA). Then it holds that j o j¢ = ¢ iff

§€ o {x}c = {*}¢, since we have the following natural bijection:

Homg (C x C, Q) = Homg(C,Q°)

jodc %o {x}e.

*4 Recall that the diagonal morphism A¢ : C — C x C is a morphism such that m Ag = mAy =
ido. Suppose that there exists a morphism h : D — C x C such that h equalizes 71 and ma,
i.e., mph = mah. If there were to exist a morphism k : D — C such that h = Agk, then we
have mih = m;Ack = k (¢ = 1,2). Thus, k = m;h(i = 1,2) is the unique morphism such that
h = Ack.
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((ii) = (iv)) Let f: A — C be a morphism in €. Note that the following diagram

is a pullback square:

A—7r L

<idA7f>I p-b. IAC

AxC——=CxC.
fxide

This implies that char({id4, f)) = char(A¢) o (f x id¢) holds. Suppose that
the diagonal morphism A¢ is a closed subobject of C' x C, i.e., jochar(A¢) =
char(A¢). Then we have

char((id 4, f)) = j o char((id4, f))
= jochar(A¢) o (f x ide)
= char(Ac) (f X ldc) ( Ac € ClSubg(C X C))
= char((ida, f)).

Therefore, (id4, f) : A— A x C is a closed subobject of A x C.

((iv) = (1)) Letm : A — B be a dense monomorphism. To prove that C' is separated
for j, let f,g: B — C € Homg(B,C) be two morphism such that fm = gm,
ie., m&(f) = mE(g). Note that the following diagram is a pullback square:

A e B

<idA,fm>I p.b. I(id&ﬁ
Ax (C>——=BxC(C.
mXxide

Recall that the infimum (m x idg) A (idp, f) : A — B x C of two subobjects
mxide: Ax C— BxC and (idg, f) : B— B x C in Subg(B x C) is given

by the above pullback square. Hence, we have
char((m x id¢) o (ida, fm)) = char((m x id¢)) A char((idg, f)).

Since m is dense, m X id¢ is also dense (see the proof of Lemma B=21). There-

fore, we have

char((m X id¢) o (ida, fm))
= j o char((m x id¢) A char({idp, f)))
= j o Ao {(char((m x id¢)), char({idp, f)))
= Ao (j x 7)o (char((m x id¢)), char((idg, f))) (by joA=Ao(jxj))
= Ao (char((m x idc)), char({id5, f)))
= char((m x id¢)) A char((idg, f))
ar(idpxco A (idp, f)) (. m x ide is dense)
= char(idpxc A (idp, f)) (. (idp, f) is closed, by assumption)
ar((idg, f))-

ch

=ch

Since fm = gm and (idp,g) is closed, we also have char((idg, f)) =

char((idpg, g)), by the similar argument. This implies that there exists an
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isomorphism ¢ : B — B such that (idp, f) = (idg, g)t. i.e., t =idp and f = gt.
Hence, we have f = g. Therefore, m¢, is injective. Thus, C is separated.

The proof is complete. ]

Lemma 3.3.3. Let E be an object in £. Then E is separated for j iff there exists a

sheaf Ig for j with a monomorphism mg : E — Ig. O

Proof. We shall prove that we can take the exponentiation QF of Q by E as the
required sheaf Ir. Recall that for the equalizer e; : Q; — Q of j and idg, there
exists the retraction 7 : Q — Q; of e;, i.e., re; = idg. We shall write (—)Z for the
exponentiation by E, i.e., E x — -4 (=)F. Consider the composite 7 o {x} 5, where
{x}g : E — QF is the singleton morphism and 7 = (—=)®(r). Consider the image
mg : B — QJE of ¥ o {*}g with an epimorphism 0z : E — E’ as in the following
diagram:

gz ge _f QF
mg

QF —
A O /
E'.

By Lemma BZ271, Sh;£ is closed under exponentiation. Hence, QJE € Sh;&. In partic-
ular, Qf € Sep;€. By Lemma BZ3, the domain E’ of the monomorphism mpg with
separated codomain Qf is also separated, i.e., F' € Sep,€&.

Suppose that E € Sep;£. By exponentiating the image factorization j = e;r,
we have j¥ = ef or”. By Lemma B33, we have j” o {x}p = {*}p. Hence, we
have ef o 7¥ o {¥}g = {*}g. Since {*}g is a monomorphism, ¥ o {x}g is also
a monomorphism. Therefore, r¥ o {x}p : E QJE is the required monomorphism.
Moreover, for the image factorization mgofg of r?o{*} g, 0 is also a monomorphism.
Thus, 65 is a monomorphism and an epimorphism in the topos £. Consequently, 05
is an isomorphism, i.e., £ = E’.

Conversely, suppose that there exists a sheaf Iy with a monomorphism mg : £ —
Ig. The sheaf Ig is, in particular, separated. By Lemma B33, E is also separated.
The proof is complete. |

Lemma 3.3.4. Let E be an object in £. Then there exists an epimorphism 0g : B —
E' in € such that the kernel pair of O is represented by the closure Ap : E — Ex E
of the diagonal morphism Ag: F — E X E for E. O

Proof. As is the proof of Lemma B33, take the image mp : E' — QF of r¥ o {x}g
with an epimorphism 0z : E — E’, i.e., ¥ o {x}g = mg o §g. Note that the kernel

pair of A is the same as that of r¥ o {x}p = mg o 0g. To verify this, consider the
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following two diagrams:

mEg

l M A}/ p.b. I%;ﬂ (3.3.1)

O X
and
. OF
l (1 I%f (3.3.2)
ExE Qf x QF.

(rPofx}p)x(rPo{s}p) 7
Since the right-hand side of the above rectangle in (BZ3) is a pullback square, the
left-hand side (I) of the rectangle is a pullback square iff (II) is a pullback square in
the above diagram in (BZ33), by the pasting lemma for pullback squares. Hereafter,
we shall write sp for ¥ o {x}x for short.

Accordingly, we shall prove that (sg x sg)~! (AQ]E) is equivalent to A in Subg (E x
E). First, we claim that (sp x sE)’l(AQ;:) < Ag holds. To prove this, it is sufficient
to show that for any pair (f, g) of two morphisms f, g : B — E with sgf = sgg, there
exists a morphism k : B — E such that (g, f) = Agok. To thisend, let f,g: B — E
be two morphisms such that sgf = sgg, i.e., (rfo{x}g)o f = (rfo{x}g)og. Since

GF = ef o7, by composing eJE, we have

iPo{s}pof=j"o{x}pog.
By taking the exponential transpose by E, we obtain
jodpo(idp X f) =jodgo(idp x g). (3.3.3)

Consider the following diagram:

p—1 g " 4
(idB,f)I p.b. AIE p.b. tr}c@true

BXE—>EXE—>Q—>Q.
fxidg o) J

By the pasting lemma for pullback squares, the above rectangle is a pullback diagram.
This implies that dg o (f x idp) is the classifying morphism for (idp, f). By (B33),

we have
char((idp, f)) = jodp o (f xidp) = jodg o (g x idp) = char((idp, g)).

Hence, there exists an isomorphism A such that

(idp, f) = (ids, g) © h. (3.3.4)

On the other hand, consider the canonical dense morphism djq, 5y @ B — B for
(idg, f). Then we have

<idB,f> o d(idg,f} = <1dB,f> (335)
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By (B34) and (B334), we obtain
<idB7 f> = <idBa f> o d(idB,f> = <1dB5g> o (h’ © d<idB7f>)'
Therefore, we have the following commutative diagram:

h°d<idB,f>§ (Ag)"(gxidp)

|

O 1
(idp.g) O
v

Ag
BXFE————>FEXxXZE.

gXidg

=

(idB,f)

Thus, we have
(9.f) = (9 x idp)(idp, f) = Ap o (Ap) ™ (g x idp) o (h o djiay, 5))-

Consequently, in particular, for the kernel pair (sg x sg) 1 (Age), we obtain (sg x
J
sp) ' (Agr) < Ap.
J
Next, we shall prove the converse, i.e., A < (sgp x sg) }(Agr) holds. To this
J

end, it is sufficient to prove that sg coequalizes T Ag and mAg, i.e., the following
E E

E
J
where 7; : E x E — E (i = 1,2) are the projections from F x E to E. Indeed, if sg

diagram is commutative:

T A
E—

E— Ol

SE ’

coequalizes m1 Ar and mAg, then we have

(SEXSE)TE: (SEXSE)<7T1A7E, WQTE> = <SE71'1A7E7 SE']TQTE> = AQJESEWiTE(i = ]., 2)
Hence, by the universal mapping property of the pullback, there exists a morphism
1 E = (sg x sp)”'(QF) such that (sg x sE)*l(AQf)l = Apg as in the following
diagram:

E - nT1Ap=spm2Ap

To prove that sg coequalizes m1 A and mo A g, consider the canonical dense monomor-

phism da, : E — E for Ag, i.e., Agda, = Ag. Then we have
(dag)or (spmilg) = spmiApda, = spmilAp = sp (i =1,2).

Since Qf is a sheaf for j, (da,)ge is bijective. Therefore, we obtain spmAg =
J

sgmoApR, i.e., sg coequalizes m, and my. The proof is complete. [ |
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In the above proof, we have seen that the kernel pair of 6y is represented by the
product (mAg, mAg). Recall that an epimorphism in a topos is the coequalizer of
its kernel pair (see Fact BIIR). Therefore, 0 is the coequalizer of 71 Ag and mAf,

i.e., the following diagram is an coequalizer diagram:

_ mBAg on
FE——=F—F".
ﬂ'QTE

Lemma 3.3.5. Let E be an object in €. If there exists an epimorphism 0 from E
to a separated object E' such that the kernel pair of 0 is represented by the closure
Ag of the diagonal morphism Ag : E — E x E, then 0g is universal for morphisms
from E to separated objects, i.e., for any separated object S and any morphism f €

Homg(E, S), there exists a unique morphism g such that g0g = f as in the following

diagram:
JopLi E
o
g
\

v
S.

Proof. Let S € Sep,&, f € Homg(E, S) and 0 : E — E’ an epimorphism with E’ €
Sep & such that the kernel pair of 0 is represented by the product (11 Ap, ToAf).
Then the epimorphism 6 is the coequalizer of 1 Ag and mAg, by Fact BIIR. It
is sufficient to prove that f coequalizes mAg and moAg. To this end, consider the
canonical dense monomorphism da, : E ~— E for Ag, i.e., Agda, = Ag. Then we

have o o
(day)s(fmilg) = fmiApda, = fmAp=f (1=1,2).

Hence, we have (da,)5(fmAEg) = (da,)5(fmeAg). Since S is separated, (da,)% is
injective. Therefore, we have fmiAg = fmApg, i.e., f coequalizes m Ag and mAg.
Since 0 is the coequalizer of mAfg and meAg, there exists a unique morphism
g: E' — S such that g8 = f as in the following diagram:

771'1?5 9E ,

772A7E 6) :
‘g
f v
S.

The proof is complete. |
Lemma 3.3.6. The inclusion functor isep ¢ : Sep;& < & has a left adjoint ¢. O

Proof. Let F € £, S € Sep,€ and f € Homg(FE, S). By Lemma B34, there exists an
epimorphism 0z : E — E’ such that the kernel pair is the closure Ag of the diagonal
morphism Ag for E (recall that, in the proof of Lemma B33 and Lemma B34, we
have constructed @ by the image factorization of 7¥ o {x} ). By Lemma B33, 0p

is universal for morphisms from F to separated objects.
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Accordingly, we define a mapping ¢ : £ — Sep,;& by
L(E) := E'(= the image of ¥ o {x}g) (E € €&).

Next, we shall define actions of ¢ for a morphism f : F — F in £. As we have
seen in the above, there exists a unique morphism ¢(f) : ¢(E) — «(F) such that

t(f)obOg =0p o f as in the following diagram:

Then ¢ : & — Sep;€ is a functor. This implies that 6 = (HE)Eesepjg is a natural
transformation from idg to iSepj g ot. As we have seen in the beginning of the proof,
for each E € £, O has the universal mapping property. Consequently, 6 is the unit
of the adjoint ¢ - isep,e- The proof is complete. |

Lemma 3.3.7. Let E be a separated object for j in €, I a sheaf for j andm : E — I
a monomorphism in €. Then the canonical dense monomorphism d,, : E — E for m

is universal for morphisms from E to sheaves for j. O

Proof. Let E € Sep; and I, F € Sh;€. Let m : E — I be a monomorphism and
o € Homg (E, F). Consider the canonical dense monomorphism d,, : £ — E for m.
By Lemma G234, E is a sheaf for j, since E is closed. Since F is a sheaf for j, the
mapping o

(dm)7 : Homg (E, F) — Homg (E, F)
is bijective. Hence, for the given o € Homg(E, F'), there exists a unique morphism

7 € Homg (E, F) such that 7 od,, = o as in the following diagram:

The proof is complete. n
Lemma 3.3.8. The inclusion functor isn;e : Shj€ < Sep;E has a left adjoint. (]

Proof. By Lemma B33, for each £ € Sepg, there exists a sheaf Ig for j with a
monomorphism mg : E — Ig. In fact, we can choose mg = ¥ o {x}p: £ — Qf
(see the proof of Lemma B33). By Lemma B3, the canonical dense monomorphism
dp,,, for mg is universal for morphisms from E to sheaves for j.

Accordingly, we define a mapping (- )g,, ¢ : Sep;E — Sh;E by setting

(- )Scij(E) =E (E € Sep;E), (3.3.6)

where E is the closure for mg : E — Ig. Next, we shall define an action of ( - )sep.g
for a morphism f : E — F in Sep;€. Let dpy, + E — E and d,,, : F — F be two
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canonical dense monomorphisms for mg : E — Ig and mp : F — Ip, respectively.
By the universal mapping property of d,, ,, there exists a unique morphism f : E — F

such that fd,,, = dm,, f as in the following diagram:

Now, we define (- )g,, ¢(f) for each f: E — F in Sep; by,

ﬁSepjg(f) = f. (3.3.7)

Then (- )g,p, ¢ : Sep;€ — Sh;€ is a functor.
J
Finally, we define a family of morphisms v = (vg) E€Sep, & for each object E in
Sep,€ by

vgp :=dp, : E— E (canonical dense monomorphism for mpg). (3.3.8)

Then v is the natural transformation from idstjg to ign,e0( - )Sep.ea by the definition
h J

of (-)Scpjg. As we have seen in the beginning of the proof, for each E' € Sep,&,

vg has the universal mapping property. Consequently, v is the unit of the adjoint

ﬁSep-S 4 isnh,. The proof is compete. |
J
Now, we shall prove Theorem B=31. We have two adjoints ¢ iSep, € and msep e
J
isn;e as in the following diagram:
Shjg( L Sepjé’( L E. (3.3.9)
ish,€ iSep; €

Note that the inclusion functor i : Sh;& < £ is just the composite isepjg o igne of
ish;e and isepjg. Therefore, the left adjoint of the inclusion functor ¢ is given by the
composite (_)Sepjg o, ie., (_)Sepjs ot - . We shall denote this left adjoint by a.
The left adjoint a is called the associated sheaf functor or the sheafification functor.
For an object F in &, the sheaf a(E) for j is called the sheaf associated to E, or the
sheafification of E.

We shall describe the sheaf a(F) associated to F for each E € £ more explicitly as
follows. First, consider the composite 7% o {*}g : E — Qf of {x}g and r¥, and take

the image factorization of 7¥ o {*} g as in the following diagram:

rEo{*}E

\ 5 /
0p mg
U E).

Then, from the proof of Lemma B34, p : E — «(FE) is an epimorphism with the

kernel pair Ag. Hence, by Lemma B33d, 05 is universal for morphisms from E to
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separated objects. Since mpg : ((E) — QJE is a monomorphism to a sheaf Qf for
j, by Lemma B3, the canonical dense monomorphism d,,, for mg is universal
for morphisms from ¢(E) to sheaves for j. We shall denote d,,, by pg. Then the
composite ng = pg o g : E — 1(E) — (E) is universal from E to sheaves for j.

Thus, 7 = (Ng)Eee is the unit of the adjoint a - ¢ as in the following diagram:
E 'r‘Eo{*}E Q]E
\
O UE\ I’H’LE‘
=a(F).

B) ——— i(E)

To complete the proof of Theorem BZX, we shall prove that a is left exact, i.e., a

preserves finite limits.
Lemma 3.3.9. The associated sheaf functor a: £ — Sh;E preserves finite limits. O

Proof. To show that a preserves finite limits, it is sufficient to prove that a preserves

binary products and equalizers.

(binary products) Let E,F € £. It is sufficient to prove that ng x np : E X F —
a(F) x a(F) is universal for morphisms from E x F to sheaves for j, i.e., for
any G € Sh;€ and any o € Homg(E x F,G), there exists a unique morphism
p € Homg(a(E) x a(F),G) such that po (ng X ng) = o as in the following
diagram:

NEXNF

ExF a(F) x a(F)

To this end, let ¢ € Homg(E x F,G). Consider the exponential transpose
6 € Homg(F,GF) of 0 by E, ie., 0 = evg o (idg x &) as in the following

diagram:
ExF

idp X6
dgE O'\L o

EXGEWG7

g

where evg is the evaluation morphism for the adjoint £ x — - (—=)F. By
Lemma B2, F¥ is a sheaf for j. By the universal mapping property of nr,
there exists a unique morphism 7 € Homg (a(F), GF) such that 7+ onp = & as
in the following diagram:

F—"5% a(F)

\i
h 3
g \

GP.
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~¢
|

Take the exponential transpose 7 € Homg(E x a(F'),G) of 7 by E, ie.,

evg o (idg x 7) as in the following diagram:
E x a(F)

EXGE?G.

7

=<
|

Take the exponential transpose 7 € Homg (E,G2(F)) of 7 by a(F), i.e.,

eVa(r) © (T X ida(r)) as in the following diagram:

E x a(F)

‘T-><idﬂ<F)i O%

G2F) x a(F) G,

P
eva(p)

where ev,(p) is the evaluation morphism for the adjoint —xa(F") 4 (—)a("), By
Lemma B2, F2(F) is a sheaf for j. By the universal mapping property of 1z,
there exists a unique morphism p € Homg (a(E), G2F)) such that pong = 7

as in the following diagram:

ne

E——a(F)
O

7 Y
GalF),

Finally, take the exponential transpose p € Homg (a(F) xa(F),G) of p by a(F),

i.e., p=eva o (p X idary) as in the following diagram:

a(E) x a(F)

- . 14
leda(F)\L 5

Galh) x a(F) —— G.

eva(F>

Then p is the unique morphism such that po (ng x nr) = 0. Indeed, from the

above, we obtain

o (5 X )

(e X ida(ry) o (idp x nF)

= eVa(r) © (p X ida(p)) © (NE X ida(r)) © (ide X 1F) (. p = eva@r)o(p X ida(r)))
Va(r) © (P o nE X ida(r)) © (idp X 1F)

Va(r) © (F X ida(ry) 0 (idg x np) (- pong =7)

= 7o (idp X nF) (7 = evam 0 (7 X ida(r))

VE O

(¢]

(idEXi')O(idEXﬂF) ('.'%:eVEO(idEXf'))
= VEO(idE ><7A'O’r)F)
=evgo(idg x6) (. Tong=07)

= 0.

The uniqueness follows from the construction of p.
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(equalizers) B Let e: A — B be an equalizer of f,g: B — C'in £ as in the following
diagram:
A=*>B—=C.
g
Consider the equalizer d : E — a(B) of a(f) and a(g). Since a is a functor, a(e)
equalizes a(f) and a(g). Hence, there exists a unique morphism k : a(A) - E
such that dk = a(e) as in the following diagram:
a(f)

E>———a(B) —=x a(C)

Ay a(g)
k
a(e)

a(A).

To show that a preserves equalizers, it is sufficient to prove that &k : a(A) — E'is
an isomorphism. Since Sh;€ is closed under limits, by Lemma B=2, E is a sheaf

for j. Hence, it is sufficient to prove that k is a dense monomorphism. Indeed,

if k were to be a dense monomorphism, then k is closed, i.e., a(A) = a(A), by

Lemma B24, and a(A) = E. Therefore, we obtain a(A) 2 a(A) @ E.

First, we shall prove that k is a monomorphism. To this end, let u,v : X —

a(A) be two morphism in £ with ku = kv. Consider the following pullback
square:

Pt . X

<m>l p.b. i(u,w (3.3.10)
Ax A——=a(A) x a(A).

NAXNA

Then we have
neep = a(e)nap = kdur = dkvr = a(e)vr = a(e)naq = npeq.

Recall that ng = pup 0o 0p and pp is a monomorphism. Hence, we have fgep =
Opeq. Recall that the kernel pair of g is the closure Ag : B — B x B of
the diagonal morphism Ag : B — B x B. Therefore, there exists a unique

morphism [ : P — B such that Agl = (ep, eq) as in the following diagram:

where m; : B x B — B (i = 1,2) are the projections and «(B) is the image of

rB o {x}p. Consider the pullback of the canonical dense monomorphism dn ,

*5 This proof is given in [3, Lemma 4.4.6].
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for Ap along [ as in the following diagram:

B
ll(dAB)I I
B.

P l

Put m := [7}(da,) for short. Then m equalizes ep and eq. Indeed, since

Apl = (ep,eq), we have

epm = m Aglm = m Agda ,h = 1 Agh =h

= mAgh = WQTBdABh = myAglm = egm.
Since the equalizer e is a monomorphism, we obtain pm = ¢gm. Hence, we have
My a)(M4P) = Napm = nagm = my 4y (naq).-

Since the pullback of a dense morphism is also dense, m : [71(B) — P is
dense. Since a(A) is a sheaf for j, the mapping my 4, : Home (P, a(4)) —
Homg (I71(B),a(A)) is bijective. Hence, we have nap = naq. By the commu-
tative diagram (BZ31W), we obtain ut = vt. Consider the image factorization

t = nw of t as in the following diagram:

p— ' X

BN

Then we have unw = vnw. Since w is an epimorphism, we obtain

un = vn. (3.3.11)

Now, consider the image factorization n4 = 64 0u4 as in the following diagram:

A s a(A)
L(A).

Note that the product 64 x 64 of the epimorphism 64 is an epimorphism,
by Fact BTIT2. Hence, we have the image factorization na x n4 = (64 X 04) ©
(aXpa). Since the image is stable under pullback, by Fact B0, the pullback
diagram (BZ3T0) is written as follows:

P ke N L X

<p,q>l p-b. p.b. \L(u,v)
\
AX A——s L(A) X L(A)>—>a(A) X a(A),

0A %04 BAXpA

Since p g is dense, so is the product pg X pg, by Fact BET4. By Fact B3, the
pullback n of the dense monomorphism g4 X p4 is also dense. Now, recall the

equation (BZ3) and consider

Mgy (u) = un = vn = ng 4)(v) € Home (P, a(A4)).
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Since a(A) is separated, n;(A) is injective. Hence, we obtain u = v. Therefore,
k is a monomorphism.
Next, we shall prove that k : a(A) — E is dense. To this end, consider the

following pullback square:

Q—"—~B
Q\L p.b. lﬁB
E>—s a(B).

Then, by the naturality of of n, we have
nofh =a(f)nsh = a(f)dq = a(g)dq = a(g)nsh = ncgh.

As is the case for the above proof of the monicity of &, this implies that there
exists a unique morphism [ : Q — C such that Acl = (fh, gh). Consider the
pullback of the canonical dense monomorphism da, for Ag along [ as in the
following diagram:

~1(C) L—

ll(dAc)I p.b.
P

l

Q

dag

Put m := [71(da,) for short. Then, as is the case for the above proof of the
monicity of k, we have fhm = ghm, i.e., hm equalizes f and g. Since e is the
equalizer of f and g, there exists a unique morphism I’ : [=*(C) — A such that

hm = el’ as in the following diagram:

A% s B——=C
l hm
=1(0).

On the other hand, note that m is dense, since m is the pullback of the dense
monomorphism da. Since a(A) is a sheaf for j, m; 4, : Homg(Q,a(4)) —
Homg (I71(C), a(A)) is surjective. Hence, for nal’ € Homg (I71(C), a(A)), there
exists a unique morphism ! € Homg(Q, a(A)) such that Im = nal’. From the

above, we have
dgm = nphm = a(e)el’ = a(e)nal’ = a(e)lm = dkim.

Since d is a monomorphism, we obtain gm = kim € Homg(I71(C), E). Con-
sider m};(q) = m};(kl) € Homg(Q, E). Since E is separated, m}, is injective.
Hence, we have ¢ = kl. Take the image n : N — FE of q. Then there exists
a morphism s such that n = ks, since n is the image of q. Hence, we have
n < k in Subg(F). On the other hand, since ¢ is the pullback of np and
np = pup o O is the image factorization with a dense monomorphism g, the
image n of ¢ is dense. Therefore, we have m 2 idg. Since the closure operator

is order-preserving, we have m < k. Thus, we obtain k£ = idg, i.e., k is dense.
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The proof is complete. |
With the above lemma, the proof of Theorem BZ3X is complete.

Corollary 3.3.1. Let E be an object in £. Then there exists a bijection between
the class of all closed subobjects ClSubg (E) of E in £ and the class of all subobjects
Subsy,e(a(E)) of a(E) in Sh;E. O

Proof. Recall that there exists the truth value object €; in Sh;£. Hence, we
have the bijection: Subgpe(a(E)) = Homgye(a(E),§2;). Since the associated
sheaf functor a is the left adjoint of the inclusion functor i, we have the bijection:
Homgy,e(a(E), ;) = Homg(E,Q;). By Lemma B3, Q; classifies ClSubg(E).
Therefore, we have the bijection: Homg(E, ;) = ClSubg(E). From the above, we

obtain
Subghjg(a(E)) = HomShjg(a(E),Qj) = HOIIlg(E'7 QJ) = ClSubg(E)

The proof is complete. |

3.4 Lawvere-Tierney Subsumes Grothendieck

Let C be a small category. Recall that a Grothendieck topology J on C is a
subobject of the truth value object Q of the presheaf category SetsC”. Recall also

that SetsC” is a topos.

Theorem 3.4.1 (Lawvere-Tierney subsumes Grothendieck). Let C be a small
category and true : 1 — € a subobject classifier for the presheaf category SetsC™. If
7 1s a Lawvere-Tierney topology on Setscop, then there exists a unique Grothendieck

topology J on C making the following diagram a pullback square:
I]
Q

Conversely, if J is a Grothendieck topology on C, then there exists a unique Lawvere-

!
P true (341)
 —

J
.b.
J

D<=

Tierney topology j : Q@ — § on SetsC” making the diagram (8Z) a pullback

square. |
Proof. Let j be a Lawvere-Tierney topology on SetsC”. Define a subobject J —
by the pullback square (BZ), i.e., for a sieve S on C € C, we set

S e J(C) L o (S) = te,

where t¢ is the maximal sieve on C. We shall prove that J is a Grothendieck topology
on C.
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(tc € J(C) for all C € C) Let C € C. Recall that truec(x) = t¢. Since a Lawvere-
Tierney topology j satisfies the condition j o true = true, we have jo(t¢) = tc.
Therefore, we obtain tc € J(C).

(stability axiom) Recall that, by the definition of €2, for any f : D — C in C, we
have (f)(S) = f*(S) for all S € QC. Since j is a natural transformation from
Qto Q, foreach f: D — C in C, we have jpoQf = Qf o jo as in the following
diagram:

ac 5 qc
Qf i ) iszf

Jc

that is, we have jp(f*(S)) = f*(jc(9)) for all S € QC. In particular, for
all S € J(C) and all f: D — C in C, we obtain jp(f*(S)) = f*(jc(S)) =
f*({te) =tp, e, f*(S) € J(D).

(transitivity axiom) First, we claim that j is order-preserving, i.e., for two sieves
S,T on C, if S C T, then jo(S) C jo(T). Indeed, if S C T, then we have
Jo(S) = je(SNT) = jo(S) Nje(T) C jo(T). To prove the transitivity of J,
let S € J(C) and R € QC such that for any f: D — C € S, f*(R) € J(D)
holds. Since j o j = j, it is sufficient to prove that jo(jo(R)) = tc. Let
f:D — C € S. Then we have f*(R) € J(D), i.e., jp(f*(R)) = tp, by
assumption. By the naturality of j, we have f*(jo(R)) = jo(f*(R)) = tp.
Hence, in particular, we have idp € f*(jo(R)). This implies that f € jo(R)
holds. Therefore, we have S C jo(R). Since j is order-preserving, we obtain
Jjo(S) C je(je(R)). On the other hand, since S € J(C'), we have jo(S) = tc.
Thus, we obtain jo(jo(R)) = te.

We shall prove the converse. Let J be a Grothendieck topology on C. We have
defined a Lawvere-Tierney topology j on Sets©”” in Theorem B as follows: for

C € C and a sieve S on C, we set
jo(8) =={g: D = Clg"(5) € J(D)}.

We shall verify that j classifies J, i.e., for any S € QC, it follows that S € J(C) <
jo(S) = te or equivalently, char(J — Q) = j. Let S € QC. Suppose that S € J(C).
Then, by the stability axiom of J, for any g : D — C, we have g*(S) € J(D).
Therefore, we have jo(S) = to. Conversely, suppose that jo(S) = t¢. Then for any
g: D — C € tc, we have g*(S) € J(D). Note that tc € J(C). By the transitivity
axiom of J, we have S € J(C). Therefore, j classifies J. By the condition for the
subobject classifier true : 1 — €, j is the classifying morphism for J — 2. The proof

is complete. |

In accordance with Theorem B2, we shall call the unique Grothendieck topology
J determined by j via the pullback square (B2) the Grothendieck topology induced

by j.
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To conclude this section, we shall prove that “a j-sheaf is a J-sheaf”. To begin

with, we shall reformulate the sheaf condition for a Grothendieck topology as follows.

Fact 3.4.1. Let (C,J) be a site. A presheaf P on C is a sheaf on (C,J) iff for any
C e C, any S € J(C) and the inclusion functor i : S < y(C), the following mapping

ip : Homggigeor (S, P) 3 p— poi € Homggegcor (y(C), P) (3.4.2)
is bijective. O

Proof. Let P € Sets®” . Suppose that P is a sheaf on (C,J). Let C € C, SeJ(C)
and g € Homggegcor (S, P) a matching family for S of P. Since P is a sheaf on
(C,J), there exists a unique amalgamation z# € PC of u, ie., for any f € S,
(Pf)(z") = o' holds. Accordingly, we define a mapping as : Homggggcor (S, P) —
PC for p1 € Homggeor (S, P) as follows: ag(p) is the unique amalgamation z*
of p. Clearly, this correspondence is bijective. On the other hand, by the Yoneda
lemma, we have another bijection: PC = Homgg cor (y(C), P), and we have a unique
natural transformation fi € Homgg.cor (y(C'), P) such that fic(ide) = a#. Then for
all f: D — C €S, we have

(e (ide))
(by the naturality of )
)p(f) (- feS)

This implies that i} is bijective.

To prove the converse, suppose that the mapping
ip : Homggigeor (S, P) 3 p— poi 3 Homggegeor (y(C), P)

is bijective for every C' € C and every S € J(C). To prove that P is a sheaf on
(C, J), we must show that every matching family u € Homggcor (S, P) has a unique
amalgamation. To this end, let y € Homgiscor (S, P). By assumption, there exists a
unique natural transformation i € Homge cor (y(C), P) such that fi o i = . By the
Yoneda lemma, we have another bijection: Homggi cor (y(C), P) 3 v — ve(ide) 2
PC. Hence, there exists a unique element z# € PC such that fic(id¢) = z#. We
shall prove that = is an amalgamation of . Then for each f: D — C € S, we have
(P = (P) (o (ide))

= fp(f) (by the naturality of )

=pup(f) (cpei=p,  [feS).
This implies that x” is an amalgamation of x. To prove the uniqueness, suppose
that z € PC is an amalgamation of y. By the Yoneda lemma, there exists a unique
natural transformation p* € Homggscor (y(C'), P) such that p(ide) = x. Since x is

an amalgamation of y, for any f: D — C € S, we have

(1 oi)p(f) = pp(f) = po(x) = ap(f) = (o i)p(f).
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Hence, we have i} (u®) = ip(ft). Since i} is bijective, we have u* = fi. Therefore, we

obtain = uf(ide) = fic(ide) = z#. The proof is complete. [ |

Theorem 3.4.2. Let C be a small category, j a Lawvere-Tierney topology on the
presheaf category SetsC” and J the Grothendieck topology induced by j. Then a
presheaf P € Sets®” is a sheaf for j iff P is a sheaf on the site (C,J). O

Proof. Let P € Sets®". Suppose that P is a sheaf for j. We shall prove that
P is a sheaf on (C,J). To this end, let S € J(C)(C € C), i.e., jc(S) = tc and
p € Homggeooor (S, P). We shall prove that the inclusion ¢ : S — y(C') is dense. To
this end, it is sufficient to prove that for any D € C and any f : D — C € y(C)(D), it
follows that f € SD, i.e., S = y(C). To prove this, let f: D — C € y(C)(D). Then,
by the definition of the closure operator and the induced Grothendieck topology J,

we have the following equivalences:
f:D—C€8D <« (jochar(i))p(f) =tp < char(i)p(f) € J(D).
Recall that the classifying morphism char(é) for ¢ : S — y(C) is defined as follows:

char(i)p(f) = {g: D" = D[ (y(C)(9))(f) € SD}.

Note that (y(C)(9))(f) = fg. Hence, we have char(i)p(f) = f*(S). Since S € J(C),
by the stability of J, f*(S) € J(D). Therefore, we have f € S. Thus, i is dense.

Now, since P is a sheaf for j, the mapping
Zj’i—’ : I{OInSetscOp (S’ P) - I—IOInSetscOp (y(C)’ P)
is bijective. This implies that P is a sheaf on (C, J).

To prove the converse, suppose that P is a sheaf on (C,J). Let m: A — F be a
dense subfunctor of . We shall prove that the mapping

mp : Homggcor (B, P) 3 7 +— 7 om € Homgggcor (4, P)
is bijective. To this end, let o € Homggcor (A, P). We shall prove that there exists
a natural transformation 7 € Homgg cor (E, P) such that 7 om = o. First, we shall
define proposed 7. Let C € C and e € EC. Note that A = E, sincem : A — E

is dense. By the definition of the closure operation and the induced Grothendieck

topology .J, we have the following equivalences:
e € AC = EC & (j o char(m))c(e) = te < char(m)c(e) € J(C).
Note that char(m)c(e) = {f : D — C'| (Ef)(e) € AD}. Put
p=A{op((Ef)(e)) | f: D — C € char(m)c(e)}

and S := char(m)c(e) for short. We claim that p is a matching family for S. To
prove this, let f: D — C € S and g: D' — D. Then we have fg € S, since S is a

sieve on C. Then, by the naturality of o, we have

(Eg)(on((Ef)(e))) = op (Eg)(Ef)(e))) = on ((E(fg))(e))-



Hence, p is a matching family for S. Since P is a sheaf on (C,J), there exists a

unique amalgamation z¢ € PC of p, i.e.,
forall f:D—=CeS, (Pf)ag)=o0cp((Ef)(e)). (3.4.3)

Define 7 € Homggyscor (E, P) for each C' € C and e € EC by

To(e) = zg.

We must verify that 7 : E — P is a natural transformation. To this end, let e € EC

and h : D — C. We shall prove the following diagram is commutative:

EC %5 pC

a0 |

ED ——> PD.

Note that (Ph)(rc(e)) = (Ph)(z§). On the other hand, we have 7p(Eh(e)) =
mgsh)(e). Put T := char(m)p((Eh)(e)) for short. Then we have T' € J(D), since
(Eh)(e) € ED. To show that (Ph)(z%) = z it is sufficient to prove that
(Ph)(zg) is the amalgamation of the matching family

{op/(Ef)((ER)(€)))| f: D" — D eT}.
In fact, by (8233), for any f: D’ — D € T, we have
(Pf)((Ph)(zg)) = (P(hf))(zg) = op ((E(hf))(e))-

Thus, we obtain (Ph)(z¢) = xgh)(e).

Next, we shall prove that 7 om = o. To this end, let C € C and a € AC. Then
we have 7o (mc(a)) = 7¢(a) = 2. Note that char(m)c(a) = tc. Then oc(a) is the
amalgamation of the matching family {op((Ef)(a))| f: D — C € tc}. Therefore,
we have o¢(a) = 2 = 7¢(a). Thus, we obtain 7om = o.

Finally, we shall prove that 7 is the unique natural transformation in
Homgiocor (E, P) such that 7 o m = o. To this end, suppose that there ex-
ists another natural transformation p € Homggiscor (E, P) such that pom = o.
To show that p = 7, it is sufficient to prove that pc(e) is the amalgamation of
{op((Ef)(e))| f: D — C € char(m)c(e)} for every C € C and every e € EC.
To this end, let C € C and e € EC. Put S, := char(m)c(e) for short. Note
that S, € J(C). Since p is a natural transformation from F to P, for any
f:D— CeS,, wehave (Pf)(pc(e)) = pp((Ef)(e)). Note that (Ef)(e) € AD for
all f: D — C € S,, since (Ef)(e) € AD. Note also that

pp(Ef)(€)) = mp((Ef)(e)) = 2D

for all f : D — C € S,, by the assumption pom = 7 om. Hence, we have
op((Ef)(e)) = pp((Ef)(e)) for all f: D — C € S,. By the naturality of p, we
have (Pf)(pc(e)) = op((Ef)(e)) for all f: D — C € S,. This implies that pc(e) is
the amalgamation of {op((Ef)(e))| f: D — C € char(m)c(e)}. Therefore, we have
pc(e) = 1¢(e). Thus, we obtain p = 7. The proof is complete. [ |
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